
SYNTHESIS VIA OXAZOLINES. VIII. ASYMMETRIC ADDITION OF GRIGNARD REAGENTS TO CARBONYL COMPOUNDS IN THE PRESENCE OF A CHIRAL OXAZOLINE

A. I. Meyers* and Michael E. Ford

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521

(Received in USA 6 F bruary 1974; received in UK for publication 25 February 1974)

In the two previous reports^{1,2} the use of chiral oxazolines <u>1</u> and <u>2</u> in asymmetric syntheses were described. We have now extended our studies to include chiral complexes of Grignard reagents (<u>3</u> and <u>4</u>) which lead to secondary and tertiary alcohols <u>5</u> (R'=H and R'=alkyl, respectively) in 12-25% optical purity. The asymmetric Grignard addition was studied both in the presence of the alkoxymagnesium halide <u>3</u>, formed by initially treating <u>1</u> with an equivalent of RMgBr, and in the

Exp	Carbony1 ^b			Temp° ^C	Carbinols <u>5</u>			
		RMgBr ^D	Oxazoline ^b		[α] ^{25^d 589}	Config. ^(lit.)	Optical ^e Purity %	Yield ^f
۱	PhCOEt	Ме	1	25°	-3.40	s ^k	20	81
2	PhCOEt	Me	<u>1</u>	-20-r.t.	-4.35	S	25	80
3	PhCOEt	Me	<u>1</u> g <u>2</u> h	-20-r.t.	-3.98	S	23	85
4	PhCOEt	Me	<u>2</u> h	-5-r.t.	+2.95	R	17	89
5	MeC0Et	Ph	<u>1</u>	-20-r.t.	-2.45	s ^k	9	9 8
6	C6H11COPh	Ме	1	-20-r.t.	-2.13	s ^e	11	9 0
7	C6H11COMe	Ph	<u>1</u>	-20-r.t.	-2.57	s²	13	9 8
8	PhCH0	Me	1	-20-r.t.	+5.03	R ^m	12	92
9	<u>n</u> -HexCHO	Me	1	-20-r.t.	-1.63	R ⁿ	17	86
10	<u>t</u> -BuCHO	Me	<u>1</u>	-20-r.t.	-0.44 ⁱ	R ^o	12	80
11	<u>t</u> -BuCHO	Ph	<u>1</u>	-20-r.t.	-0.58	s ^p	21	95
12	<u>t</u> -BuCHO	Ph	<u>2</u> h	-5-r.t.	-0.02 ^j	S	0.5	84

<u>Table I</u> Addition of Grignard Reagents to Carbonyls Using <u>1</u> and <u>2</u> in THF^a

a) All reactions carried out on 10 mmoles of carbonyl compound; b) Molar ratio of carbonyl:RMgX: oxazoline was 1:3.5:2 unless otherwise noted; c) Reactions maintained at the lower temperature for 1 h and then allowed to warm to room temperature; d) Rotations taken on neat samples unless otherwise noted; e) Based upon highest rotation available in literature, c.f. ref k-p; f) Distilled yields of carbinols, vpc purity 98%; g) Molar ratio of carbonyl:RMgX:oxazoline was 1:5:3.3; h) Molar ratio of carbonyl:RMgX:oxazoline was 1:1.5:4.9; i) c 51, hexane; j) c 20, benzene; k) C. Blomberg and J. Coops. <u>Rec. Trav. Chim., 83</u>, 1083 (1964); £) see ref. 4; m) G. Vavon, C. Riviere, and B. Angelo, <u>Compt. Rend., 222</u>, 959 (1946); n) S. R. Landor and A. R. Tatchell, J. <u>Chem. Soc.</u> (<u>C</u>) 2280 (1966); o) S. R. Landor, B. J. Miller and A. R. Tatchell, <u>Proc. Chem. Soc</u>., 227 (1964); p) R. MacLeod, F. J. Welch and H. S. Mosher, J. <u>Amer. Chem. Soc.</u>, <u>82</u>, 876 (1960).

1343

presence of the ether 2 as a chiral co-solvent (4). In both instances, the oxazolines 1 and 2 were recovered after the reaction in 78-96% yield. 3 A study of the effect of temperature on the reaction was carried out using propiophenone (Table 1, exp. 1, 2); and slightly greater stereoselectivity was exhibited at lower temperatures. Also, the stoichiometric quantities of ketone, RMgBr, oxazoline (1) were found to be optimum at 1:3.5:2, respectively (exp. 2 vs. exp. 3). Under all conditions complex $\underline{3}$ gave 2-phenyl-2-butanol $\underline{5}$ possessing the S-configuration. When 2 was employed as a chiral co-solvent (exp. 4) 2-phenyl-2-butanol was formed with 17% optical purity and possessed the R configuration. The alkoxymagnesium complex 3 was evaluated with a variety of other prochiral aldehydes and ketones and gave excellent yields of Grignard additions. The optical purities of the resulting alcohols 5, however, were rather modest (Table I, exp. 5-11). It is important to note, however, that these optical yields are in most cases comparable to the alkoxymagnesium halide-RMqX complex of a glucofuranose derivative reported recently.⁴ Furthermore, other methods which employ chiral media (e.g. 4) to induce asymmetric Grignard addition generally lead to rather poor optical yields (0-5% in most cases).⁵ In the present study, 4 was effective to the extent of 17% o.p. (exp. 4), whereas it was poorly effective as a chiral medium in the reaction of pivaldehyde and phenylmagnesium bromide (exp. 12). For reasons still not understood, chiral magnesium alcoholates (e.g. $\underline{3}$) appear to be much more effective in Grignard additions than the corresponding chiral ethers. Comprehension of this result must await detailed information on the structures of the so-called "double-salts" 3.

As stated in the previous report,² although the percent asymmetric synthesis of carbinols is still far from perfect, the ready availability of $\underline{1}$ and the simplicity of its use,⁶ renders it competitive with a host of different chiral reagents. We are continuing to investigate modifications in $\underline{1}$ and $\underline{2}$ in order to determine its optimum structural features.

<u>Acknowledgment</u> We wish to thank the National Institutes of Health, the National Science Foundation, and the Petroleum Research Fund for financial support.

REFERENCES

- 1. A. I. Meyers and G. Knaus, Tetrahedron Letters, 0000 (1974).
- 2. A. I. Meyers and P. M. Kendall, ibid., 0000 (1974).
- 3. Oxazolines have been shown to be inert to Grignard reagents which makes the technique feasible [A. I. Meyers and D. L. Temple, <u>J</u>. <u>Amer</u>. <u>Chem</u>. <u>Soc</u>., <u>92</u>, 6646 (1970)].
- T. D. Inch, G. J. Lewis, G. L. Sainsburg, and D. J. Sellers, <u>Tetrahedron Letters</u>, 3657 (1969).
- J. D. Morrison and H. S. Mosher, "Asymmetric Organic Reactions," Prentice-Hall, 1971, pp 415-417.
- 6. A general procedure for exp. 1, 5-11 follows: A solution of <u>1</u> (20 mmoles) in 50 ml THF is prepared under nitrogen at -20°. The Grignard reagent (20 mmoles) is added slowly and the resulting homogeneous solution stirred at -20° for 30 min. An additional 15 mmoles of Grignard reagent is introduced and stirred at -20° for 30 min. The carbonyl compound (10 mmoles) is added in THF (-20°), the resulting suspension stirred for 1 h, and then allowed to warm to r.t. The reaction mixture is quenched in 50 ml ether and 100 ml saturated NH4C1. The organic phase is washed with cold 0.25 N HC1 to remove <u>1</u>, and then dried and concentrated to provide the carbinol. The acidic aqueous phase is neutralized and extracted with ether to recover <u>1</u>.